Developing a BC Provincial Assessment of Coastal Cutthroat Trout Using a Cumulative Effects and Semi-Quantitative Risk Assessment Framework

Sierra Sullivan, she/her UBC, SFU, independent consultant Fish ecologist & geneticist sierra.lynn.sullivan@gmail.com S'olh Temexw, Chilliwack, BC

John Hagen, John Hagen and Associates, Prince George BC Brendan Anderson, Ministry of Water, Land and Resource Stewardship, BC Provincial Government Sue Pollard, Freshwater Fisheries Society of BC, Victoria BC Ron Ptolemy, Ministry of Water, Land and Resource Stewardship, BC Provincial Government Jordan Rosenfeld, UBC Institute for the Oceans and Fisheries

Coastal Cutthroat Trout in BC

Distributed along the province's coastline, up to 200 km inland
 Experiencing population declines and range contractions

▶ "Blue-listed' (vulnerable) in 1999 → no legal protections
 ▶ Last draft assessment was Costello & Rubidge 2005 → never finalized, never received federal review

Risk assessment initiated by Coastal Cutthroat Working Group
 Intended to be the lead-up to a provincial management plan
 Funded by Habitat Conservation Trust Fund - in Year 2 of 3

Risk Assessments Through the Lens of Cumulative Effects

Combined effects of multiple stressors (natural and anthropogenic)

1) Effects of multiple stressors simultaneously

2) Accumulation of stressors spatially and temporally

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Qualitative

Narrative Descriptions

- •Data-deficient species
- •Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- •Lacks empirical biological linkage

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- •Lacks empirical biological linkage

Barkley Sockeye Risk Assessment

1. Great Cer	ntral Sockeye C	CU]	2. Sproat Sockeye CU				
DESCRIPTION	DESCRIPTION OF FACTOR		CAL RISK or each factor roductive acity		DESCRIPTION OF FACTOR		BIOLOGICAL RISH calculated for each fa limiting productiv capacity		
Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Biol Risk category		Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Risk catego	
A. Terminal	Migration & Spa	awning			A. Terminal	Migration & Spa	wning		
2. Large volume of preferred water (VOPW, low temp, high O2) in estuary	LF2: Significant reductions of VOPW in inlet & estuary with chronic to impacts on adult "fitness".	Moderate	High		2. Large volume of preferred water (VOPW, low temp, high O2) in estuary	LF2: Significant reductions of VOPW in inlet & estuary with chronic to impacts on adult "fitness".	Moderate	Hig	
 Favorable temperatures for low stress passage 	LF4: High temps slow or stop upstream migration	Moderate	Very High		4. Favorable temperatures for low stress passage	LF4: High temps slow or stop upstream migration	Moderate	Very I	
11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	Moderate		11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	Mode	

3. Henderso	n Sockeye CU								
DESCRIPTION	OF FACTOR	BIOLOGICAL RISK calculated for each factor limiting productive capacity							
Life History Requirement	Issue/Limiting factor & id number	Current Biol Risk category	Future Biol Risk Category						
A. Terminal Migration & Spawning									
9. Stable channel banks and stable coarse bedload transport	LF10: Riparian disturbance resulting in bank erosion, increased bedload.	Very High	Very High						
11b. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. TRIB SPAWNERS ONLY	LF12B: Inadequate TRIB spawning habitat (i.e. CU production potential limited by initial fry recruitment).	High	Very High						
11. Spawning habitat quantity sufficient to fully "seed" fry rearing habitat. BEACH SPAWNERS ONLY	LF12: Inadequate BEACH spawning habitat (i.e. CU production potential limited by initial fry recruitment).	Moderate	High						

Qualitative

Narrative Descriptions

- •Data-deficient species
- •Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- •Lacks empirical biological linkage

Qualitative

Narrative Descriptions

- •Data-deficient species
- •Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Qualitative

Figure 2. Illustration of the multiplicative effect of three hypothetical stressor-response curves on predicted total system capacity. 0.126 means a Very Low current adult density (see Table 2). Figure adapted from Reilly and Johnson (pers. comm.).

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Qualitative

Narrative Descriptions

- •Data-deficient species
- •Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Population Models

Data-rich species
System or populationspecific

Qualitative

С	D	E	F G	à H I	J K	L M N	O P	CR S	T U	v w x	Y Z	A AB AC	AD A
H Analyz	er (AHA)	<u>Program E</u>	Background	Go To Dashboa	rd Enter va cell & s	alues in yellow c elect from the op	ells only. Green tions).	cells contain fo	rmulas (do not i	edit). Orange cel	lls contain drope	down menus (clia	sk on
Subbasin	Population	Species		Scena	ario 1	Scen	ario 2	Scen	ario 3	Scen	ario 4	Scen	ario 5
Yakima Population Desi	Yakima Yakima Coho		Prevent extinction, preserve genetic diversity, restore habitat.		Restore and po	Restore and populate habitat.		Increase population fitness		Maintain viability		NA	
St	abilizing	Recolonization	Recovery Phase:	Curi	rent	Pha	se 2	Pha	se 3	Pha	ise 4	Segregate	d Hatchery
		Progra	m Goals										
Program Goals		Natural Origin E Effectiv pN P Total I Termina	scapement (NOS) e pHOS < OB > NI > Harvest il Harvest	52		5%		30	30%		30% 100% 0.67		
		Key Ass	umptions	See Habitat tab	for assistance wit	h calculating Adu	t and Smolt Produ	activity and Capac	ity (using the Hab	oitat tab is Go T	o Habitat tab		
н	abitat	Adult Productivity Smolt Productivity Adj. Productivity	Adult Capacity Smolt Capacity Adj. Capacity	1.52 43 2.43	3,185 89,972 5,101	1.52 43 2.43	3,185 89,972 5,101	1.52 43 2.43	3,185 89,972 5,101	2.59 73 4.15	5,446 153,842 8,723		
		Fecundity - NORs	% Females	1,500	50%	1,500	50%	1,500	50%	1,500	50%	1,500	50%
				See SAR tab for	more options to i	ncorporate variatio	n into the G	io To SAR tab					
Hydro	and Ocean	Ocean Survival Juv. Fish Passage Survival Ad. Fish Passage Survival	Basin-to-Basin SAR - obs asin-to-Basin SAR - baseline Varu SAR?	5.13% 75.0% 92.0%	3.54% 2.21%	5.13% 75.0% 92.0%	3.54% 2.21% None	5.13% 75.0% 92.0%	3.54% 2.21%	5.13% 75.0% 92.0%	3.54% 2.21%	5.13% 75.0% 92.0%	3.542 3.542 None
		na rishr assage carma	Coeff. of Variation SAR	02.071	100%	01.077	100%	01.071	100%	02:071	100%	02.071	100%
				See Harvest Rat	e calculators bel	w to convert expl	itation rates to h	arvest rates and a	ccount for selecti	Go To Harves	t Rate calculators		
	Ocean	NORs	HORs	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%		30.0
	Lover Columbia R.	NORs	HORs	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%		24.05
Harvest	Upper Columbia R.	NORs	HORs	35.0%	35.0%	35.0%	35.0%	20.0%	20.0%	35.0%	35.0%		35.0:
	Terminal	NORs	HORs	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%		1.0%
	Total Exploitation Rate	NORs	HORs	46.7%	46.7%	46.7%	46.7%	34.4%	34.4%	46.7%	46.7%	0.0%	65.8
				0.011	50	0.0	50	0.0	50	00-1	50-1	00	500
	In Hatsham	Pre-spawning Survival	% Females	98%	50%	38%	50%	38%	50%	38%	50%	38%	50%
	in-Hatchery	Fecundity - HURs	Fag to Sub Suminal	2,322	77*/	2,322	77*/	2,322	77-7	2,322	77*/	2,322	77-7
Hatchery				0.751	0.40%	14%		14%		14%	0.4014	147.	112

Population Models

Data-rich species
System or populationspecific

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Population Models

Data-rich species
System or populationspecific

Qualitative

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Population Models

Data-rich species
System or populationspecific

Qualitative

Cumulative Effects Assessments **20 years +**

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management difficult

Ranked Threats

- Ordered variables with severity of threats
- Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Population Models

Data-rich species
System or populationspecific

Qualitative

Cumulative Effects Assessments 20 years +

Narrative Descriptions

- Data-deficient
- Makes prediction and management difficult

Ranned Threats

- Ordered variables with leve ity of threats
- •Lacks empirical biological linkage

Stress-Response Models •Threat directly inked to biological cirect Data-rich or deit

deficient opecies

Population Models

 Data is n species
 System or populationspecific

Qualitative

Cumulcive Effects A. essments

Narrative Descriptions

- •Data-deficient species
- Makes prediction and management action difficult

Ranked Threats

- Ordered variables with severity of threats
- •Lacks empirical biological linkage

Stress-Response Models

Threat directly linked to biological effect
Data-rich or data deficient species

Population Models

Data-rich species
System or populationspecific

Qualitative

Stressor-Response Models

Identify stressors

Define stress-response curves based on empirical data

Build a model that combines the functions

Application of Stress-Response Models

- Westslope Cutthroat Trout in Alberta
- Athabasca Rainbow Trout in Alberta
- Bull Trout in Alberta
- Plains Sucker in Saskatchewan
- Chinook Salmon in Nicola River, BC
- ▶ (initiated) Bull Trout in Williston Reservoir, BC
- (initiated) Arctic Grayling in Alberta
- (proposed) Nooksack Dace & Salish Sucker in BC

Application of Stress-Response Models

- Westslope Cutthroat Trout in Alberta
- Athabasca Rainbow Trout in Alberta
- Bull Trout in Alberta
- Plains Sucker in Saskatchewan
- Chinook Salmon in Nicola River, BC
- (initiated) Bull Trout in Williston Reservoir, BC
- (initiated) Arctic Grayling in Alberta
- (proposed) Nooksack Dace & Salish Sucker in BC

 Received: 10 May 2023
 Revised: 24 July 2023
 Accepted: 27 July 2023

 DOI: 10.1111/fme.12649
 Comparison
 <t

ARTICLE

Prioritizing bull trout recovery actions using a novel cumulative effects modelling framework

Laura M. MacPherson¹ | Jessica R. Reilly² | Kenton R. Neufeld³ | Michael G. Sullivan⁴ Andrew J. Paul⁵ | Fiona D. Johnston⁶

REVIEW OF ALBERTA ENVIRONMENT AND PARKS CUMULATIVE EFFECTS ASSESSMENT JOE MODEL

Stressor: environmental driver resulting in an observable biological response in a target population

(Pirotta et al. 2022, Rosenfeld et al. 2022, Jarvis et al. 2023)

Includes both natural & anthropogenic factors

Standardized response metric

Population-level productivity, system capacity, density or total abundance of the adult population

Specific vital rates

fecundity, spawning interval, stage-specific survival, age-at-maturity

Cumulative Effects Model for Prioritizing Recovery Actions

CEMPRA - Cumulative Effects Model for Prioritizing Recovery Actions

i About

Map Overview

Se Population Model

* Socio-Economic

🗘 Upload Data

📥 Download Data

CEMPRA - Cumulative Effects Model for Prioritizing Recovery Actions R-Shiny Application

Contributors

Matthew Bayly, MJBA, Alexandra Tekatch, ESSA, Dr. Jordan Rosenfeld, UBC/BC-WLRS, Andrew Paul, AEP, Kyle Wilson, CCIRA, Dr. Eva Enders, INRS, Lauren Jarvis, DFO, Julian Heavyside, ESSA, Pedro Gonzalez, UBC, Laura MacPherson, AEP, Isuru Dharmasena, Marc Porter, ESSA

Project funded (in part) through the British Columbia Salmon Restoration and Innovation Fund (BCSRIF).

Project Components

GitHub Repository for R-Package https://github.com/ essatech/CEMPRA GitHub Repository for R-Shiny Application https:// github.com/essatech/CEMPRAShiny Guidance Document https://mattjbayly.github.io/ CEMPRA_documentation/

R-Package Tutorials https://essatech.github.io/CEMPRA/index.html

LIVE (online R-Shiny Application) https://essa.shinyapps.io/CEMPRAShiny/

E	F	G	н	I
HUC -	NAME	Stressor 💌	Sub_Type	Noan -
17	LICK CREEK	Temperature	N/A C	6.174670012
17	LICK CREEK	Nat_lim_other	N/A C	0
17	LICK CREEK	Total_Mortality	Nat_mort	0.35
17	LICK CREEK	Total_Mortality	Angling	0
17	LICK CREEK	Total_Mortality	Indigenous	0
17	LICK CREEK	Total_Mortality	Entrainment	0
17	LICK CREEK	Total_Mortality	Research	0
17	LICK CREEK	Fragmentation	N/A	0
17	LICK CREEK	Barrier_dams	N/A	0
17	LICK CREEK	BKTR	N/A	0
17	LICK CREEK	NN_RNTR	N/A	0
17	LICK CREEK	Phosphorus	N/A	0.01
17	LICK CREEK	Sediment	N/A	1
17	LICK CREEK	Feb_flow	N/A	100
17	LICK CREEK	Aug_flow	N/A	100
17	LICK CREEK	Foot_flow	N/A	0
17	LICK CREEK	Selenium	N/A	0
17	LICK CREEK	WD	N/A	0
17	LICK CREEK	Habitat_loss	N/A	0
17	UPPER ATHABASCA ABOVE MIETTE RIVER	Temperature	N/A	9.263807047

LICK CREEK Sediment N/A 1 LICK CREEK Feb_flow N/A 100 LICK CREEK Aug_flow N/A 100 LICK CREEK Foot_flow N/A 0 LICK CREEK Selenium N/A 0 LICK CREEK Habitat_loss N/A 0 ABASCA ABOVE MIETTE RIVER Temperature N/A 9.263807047 Stressor Magnitude File Cycle Module

Spatial

Units

Socio-

Economic

Stressor Magnitude File

.4	A	В	C	D	E	F	G	н	1	J	
1 Management Actions		Management Cost (defined on a per unit basis)				Bulk Discounts Thresholds for Economies of Scale (optional)					
2	Management Action Name	Measurement Unit	Mean Cost per Unit	SD of Cost per Unit	Lower Limit of Cost per Unit	Upper Limit of Cost per Unit	Bulk Discount Units Threshold (Level 1)	Bulk Discount Price Multiplier (Level 1)	Bulk Discount Units Threshold (Level 2)	Bulk Discount Price Multiplier (Level 2)	
3	Beaver Dam Analogues		\$1,000	\$1,000	\$250	\$15,000	10.00	0.80			
4	Off Channel Habitat	m²	\$25	\$50	\$12	\$200	1000.00	0.90			
5	Riparian Planting 2m wide	km	\$1,500	\$2,000	\$1,000	\$20,000					
6	Riparian Planting 10m wide	km	\$30,000	\$15,000	\$5,000	\$65,000					
7											
8											
•											
<	> Management Act	ions Location	n Implement	tation	ocation Size	Attributes	Stressor Redu	action SR1	SR2 SR3 S	R4 SR	÷

Sample Time Series Projection

Adult Abundance

10

20

30

Simulation Year

40

50

Plot type:

150-

100z

50-

Progress // Coastal Cutthroat Modelling

Delineate Conservation Units + Assessment Units

Establish Stressor List

(in progress) Develop/Find Stress-Response Functions

Collect Stressor-Magnitude Data

Run CEMPRA: Status Quo Scenario

Real-

Run CEMPRA: Alternative Future Scenarios

BC Draft Conservation Units (CUs)

N = 76 draft CUs

Hypothesized to be demographically & genetically connected

Establishing Stressor List

Expert elicitation process conducted last week

Where are the BEST and WORST systems in BC?

What stressors affect Coastal Cutthroat Trout populations there?

What stressors are you MOST concerned about?

- Direct habitat loss (paved over)
- Hybridization (stocking rainbows, steelhead, coastal cutts)
- Toxins (pesticides, herbicides, swimming pools, de-icing, petroleum products, solvents, 6ppdquinone)
- Temperature
- Land use (forestry, urbanization, agriculture)
- Culverts
- Peak flow hazards (scouring)
- Riparian degradation
- Pinniped & cormorant predation
- Sedimentation
- Nutrient input (phosphates, nitrates)
- Invasives (bass, etc.)
- Barrier dams
- Hypoxia
- Heat waves
- Competing management objectives (recreation vs management)
- Illegal harvest (non-compliance)
- Lack of spawning gravel (human induced via scour export, lack of input due to dams, bank armouring reduced erosion)
- Forage fish abundance (stickleback, etc)

- Dewatering of streams (full loss)
- Storm water drainage / runoff
- Channelization / diking
 - Drought
- Competition from stocking of coho, cutts, steelhead, rainbow
- Recreational fresh/saltwater fishing
- Estuarine/foreshore development
- Lack of LWD in small streams (removal, emigration of rotten wood, no recruitment)
- Productivity driver (salmon subsidies)
- Climate change
- Summer low flows (water withdrawals, water use)
- Whirling disease
- ▶ 5-6 hatchery diseases, parasites
- Impervious surfaces (urban)
- Loss of wetlands/recharge areas (infiling)
- Loss of spawning and rearing areas (offchannel habitat loss or disconnection)
- Waste water releases (nutrients, pH Cowichan, Stony Ck)
 - Tanning chemical release (mink farms Nathan Ck)
- Water temperature

- Invertebrate pop'n changes (food sources)
- Entrainment due to water withdrawals (hydro/irrigation)
- Fragmentation (culverts, old water infrastructure, seasonal disconnection of habitats)
- Acid rock drainage
- ▶ pH
- Heavy metals (zinc, demossers in Craigflower, Oliver Ck, Colquitz, aluminum in Kitimat)
- Too many salmon projects getting funded
- Paint/milk spills into storm drains
- Forest fire suppressants
- Barrier removal
- Nutrient enrichment programs
- Stewardship groups
- Marine survival
- Agriculture

L. Jarvis et al.

Science of the Total Environment 906 (2024) 167456

DUSE	PAT EF	HWAY O	F 1	PROXIMA STESSOR	TE	RESPON	ISE	
$ed \rightarrow$		0.4	Number	Sample Depth	Fraction <0.85	Fraction	Fraction	
	1987	Site Name	of Cores	(cm) 30	1 1	<0.4 mm	9.5 mm	Good
17 2	1985	Lear	6	30	5	21	30	Bad
100	1980	Lear	6	30	10	30	40	Ugly
	Recomm	ended limit	of sedime	nt compos	ition is <2	5% of fine	s ≤6.4 mm	

SA

EFFECTS OF HIGHWAY CONSTRUCTION AND MITIGATION ON SUMMER STEELHEAD IN THE COQUIHALLA RIVER, BRITISH COLUMBIA VOLUME I

Prepared by:

RONALD A. PTOLEMY, RPBio. Fisheries Biologist Fisheries Assessment and Improvement Unit Fisheries Management Section

3

Protocol for Evaluating the Condition of Streams and Riparian Management Areas (Riparian Management Routine Effectiveness Evaluation)

Progress // Coastal Cutthroat Modelling

Delineate Conservation Units + Assessment Units

Establish Stressor List

(in progress) Develop/Find Stress-Response Functions

Collect Stressor-Magnitude Data

Run CEMPRA: Status Quo Scenario

Real-

Run CEMPRA: Alternative Future Scenarios

CEMPRA = Hypothesis Generator

Coastal Cutthroat Trout in BC

Nearly 20 years since the last assessment
 No changes to legal protections and still data deficient

► CEMPRA framework allows for use to make hypotheses about threats on the landscape → where to prioritize efforts?

Moving from risk descriptions to addressing risks on the landscape

Thank you!

John Hagen, John Hagen and Associates, Prince George BC Brendan Anderson, Ministry of Water, Land and Resource Stewardship, BC Provincial Government Sue Pollard, Freshwater Fisheries Society of BC, Victoria BC Ron Ptolemy, Ministry of Water, Land and Resource Stewardship, BC Provincial Government Jordan Rosenfeld, UBC Institute for the Oceans and Fisheries Matthew Bayly, MJBA, ESSA Technologies Ltd. Alexandra Tekatch, ESSA Technologies Ltd. Eva Enders, INRS Lauren Jarvis, Department of Fisheries and Oceans Andrew Paul, Alberta Environment and Protected Areas Kyle Wilson, Central Coast Indigenous Resource Alliance Pedro Gonzalez, University of British Columbia Laura MacPherson, Alberta Environment and Protected Areas Jessica Reilly, Alberta Environment and Protected Areas Michael Sullivan, Alberta Environment and Protected Areas

A mar and the