Robert L. Vadas, Jr.

Washington Department of Fish & Wildlife (WDFW): <u>Habitat</u> > Wildlife & Fish programs

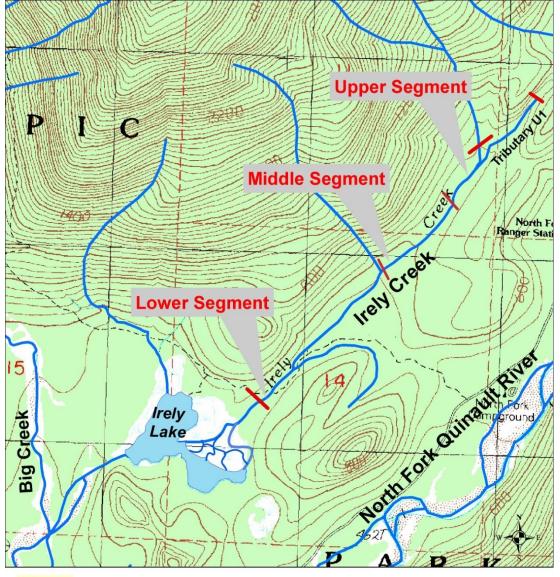
Washington Department of Ecology (WDOE)

National Park Service (NPS) & U.S. Forest Service (USFS), Olympic Region

Trout Unlimited, Olympia Chapter

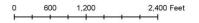
10,000 Years Institute (10KYI, Forks, WA)

Other volunteers ('trout groupies')


Long-term population response of Coastal **Cutthroat Trout (CCT) to** environmental fluctuations in a temperate-rainforest stream: hydrology, weeds & other biotic factors

Presentation assistance: Jill Silver (10KYI), Pat Crain (NPS), & Alex Foster (USFS)

Study Area (collaborated w/ NPS)



Irely Creek Olympic National Park Washington

October, 2005

Can We Predict Future Trout-Run Size?

- * We began intense microhabitat-HSI work on an abundant CCT run (in only 1 of 2 lake tribs)
 # SU/FA trout angling in Irely Lake (catch & release)
 # But run decline after 2002 lake dry-out (SU/FA)
 - In assoc. w/ (since 2002) expanding beaver dams (which provide pool refuges for fishes)
 - And *reed canarygrass (RCG)* influx D/S & in lake (bare mud in FA 2002)
 - # Follow-up surveys of trout redds during 2015-18 (for <u>model testing</u>)# Continued redd surveys into future
 - CCT recovery from *RCG removal* via lake-level &/or WQ'l benefits?
 - *Out-of-kind mitigation* (for hydrology) = field experiment

Can We Predict Future Trout-Run Size?

* 2001-18 "natural experiment" of CCT ecohydrology # Several physical & biotic variables assessed (cumulative impacts?)

- Lake level, streamflow, & Forks (WA) precipitation
 Snowpack in the Olympic Mountains
- # Forage-fish sampling via stream > lake netting &
 snorkeling (especially during summer/fall)
 - Few fish spp. in these headwaters (but other trout in lake)

Can We Predict Future Trout-Run Size?

- * Stream walks to estimate salmonid escapements
 - <u>Coho carcass/adult counts</u> (esp. late winter)
 - # Mainstem & 5 larger tributaries
 - # Some yrs. w/ earlier &/or later counts (for
 - full-escapement estimation)
 - <u>Trout-redd counts</u> (adults rarely on nests) (*Vadas et al. 2016*)
 # Upper, middle, & lower mainstems (the latter w/ long-term *beaver dams & RCG*) & tributary U1

Cutthroat Trout Rearing

- Adfluvial (lake-rearing) stock

- Dominant fish in <u>Irely Lk.</u>
 - Mostly adults
- Subdominant in <u>Irely Cr.</u>
 - YOY dominant here
 - * ~2 mo. incubation
 - Juveniles common to age 2+
 - Adults uncommon

* Resident fish the only spawners after SU/FA drought years (natural selection)?

* Less commonly seen above larger (0.9-1.5 m) <u>waterfalls</u> that temporarily form in upper segment (*unlike coho*)

• <u>Run size uncorrelated w/ that for</u> <u>sea-run coho there</u> (in the same year)

Cutthroat Trout Escapement

- Spawning in mainstem & 1 headwater tributary (U1)
 - Field methodology (Vadas et al. 2016)
 - 2001-2 (<u>full counts</u> before lake dry-outs, but spatial extrapolation upstream)
 - 2003-12 (usu. only <u>2 peak-season counts</u> in later years, w/ spatiotemporal extrapolation [via flood-caused turbidity D/S &/or incomplete walks U/S])
 - Estimated adult coho:cutthroat ratio during 2001-12 was 1.3-60.5 (median 8.9, above expected, healthy ratio of 4:1 for PNW streams)
 - Main-channel > side-channel habitats
 - <u>Late peak;</u> early > late April (mid-late March to mid-early May spawning)
 - Vs. WDFW's SASI report for periodicity (Vadas et al. 2008)
 - 0.5-1.5 mo. when T_w = 4-10^oC (peak ~6^oC) for 2010-18 (<u>coldwater-oriented</u>)

Summer/Fall Ecohydrologic Dynamics (esp. 1-y time lag suggests adult kills; *Vadas et al. 2016*)

- <u>Full lake dry-out</u> (creek intermittent)

2002-3 (two years in a row) & 2009 * Impacted 2003-4 & 2010 CCT runs * Then run recoveries (2005 & 2011-12)

- <u>Semi-dry</u> (lake reduced, creek low)

2005-6 (two years in a row w/ 2006 dry-out)

* Impacted 2006-7 cutthroat runs, then trout-run recovery (2008) # 2010 (two years in a row w/ 2009 dry-out)

* Coho recovered in 2010
2000 (three years in a row
w/ full dry-out in 1998)
* Likely impacted 2001
trout run
* Dut K level run of 20

* But ~K-level run of 2002 (nearest to *carrying capacity*)

Summer/Fall Ecohydrologic Dynamics

- Cutthroat-run escapement (adult-run size)

Estimated as <u>2*redd count (1:1 sex ratio & all adults spawned</u>)

Decreased by 3.5-8 times after lake dry-outs

<u>Increased</u> by only 2-3 times after wetness returned

Hence, the general run drop during 2001-18

* But notable recovery for 2011-15 (w/ increasingly good lake levels)

- Statistical analyses (on transformed data)

Spearman & Pearson correlation (also factor) analyses# Stepwise, linear, & curvilinear regression analyses

Trout-Environmental Relationships

- Unimportant variables

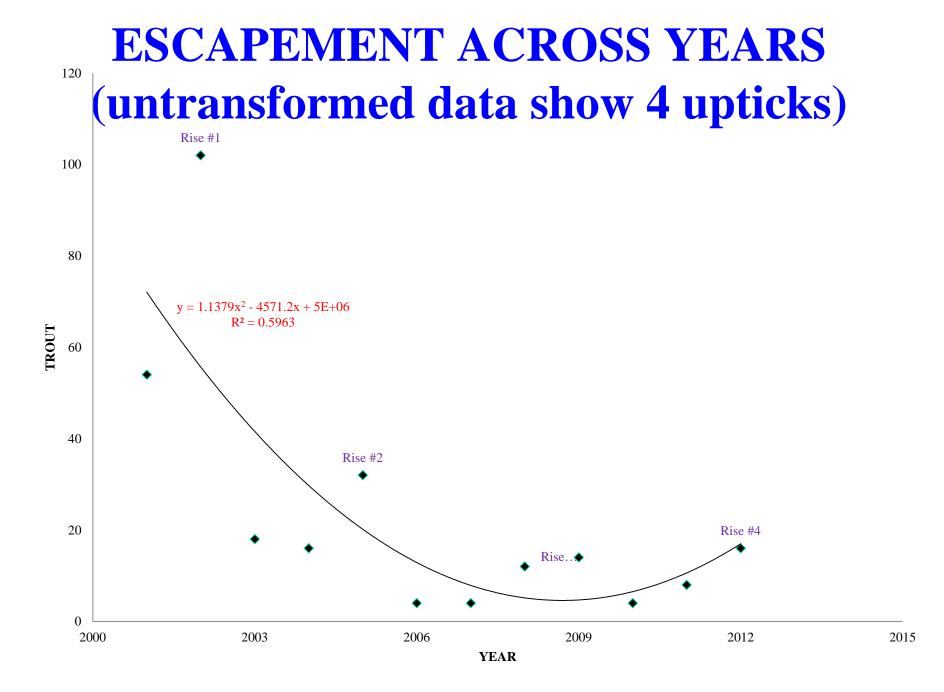
<u>Present-year</u> physical (flow/thermal) & biotic (cohoabundance) conditions (*minor sea-run effect*, at best)
Some <u>last-year physical conditions</u> (*spawning habitat* rarely limiting & *flood protection* seen in headwaters)
* Hydraulic-drop "barriers" in the upper mainstem (*braiding*)
* Flood-scour impacts (during & after trout spawning)

Trout-Environmental Relationships

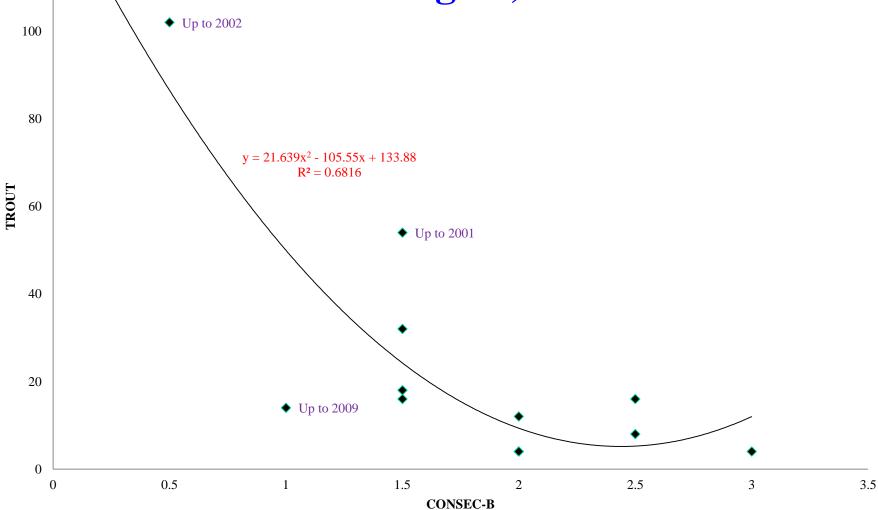
Important variables (final mult.-regress'n model) # Hydrology (short time lag = landlocking)

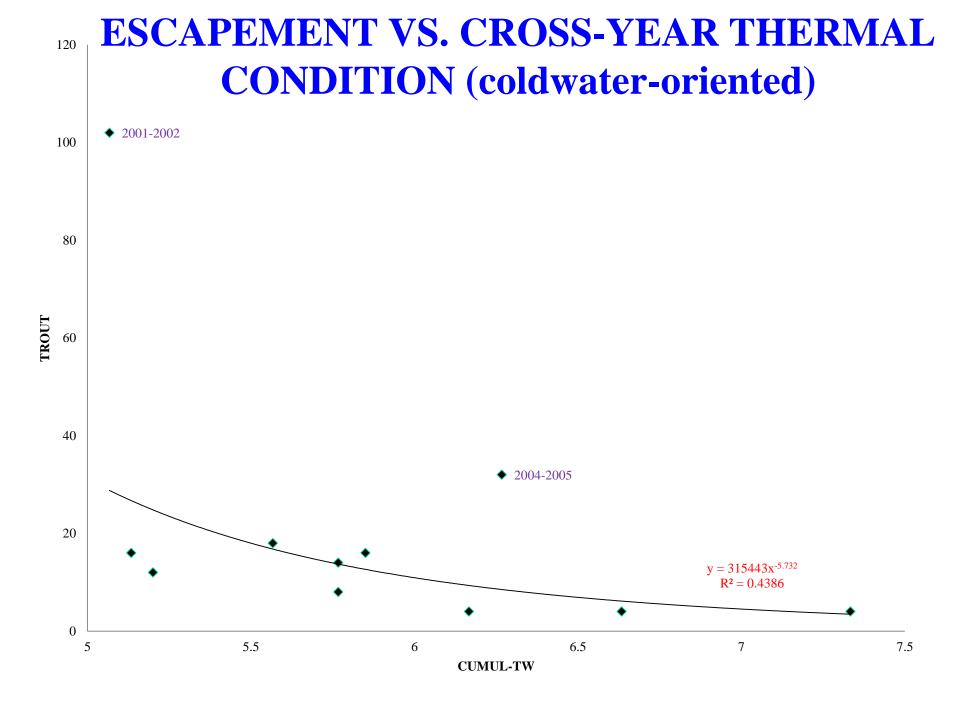
* Cumulative (drought-related) impacts

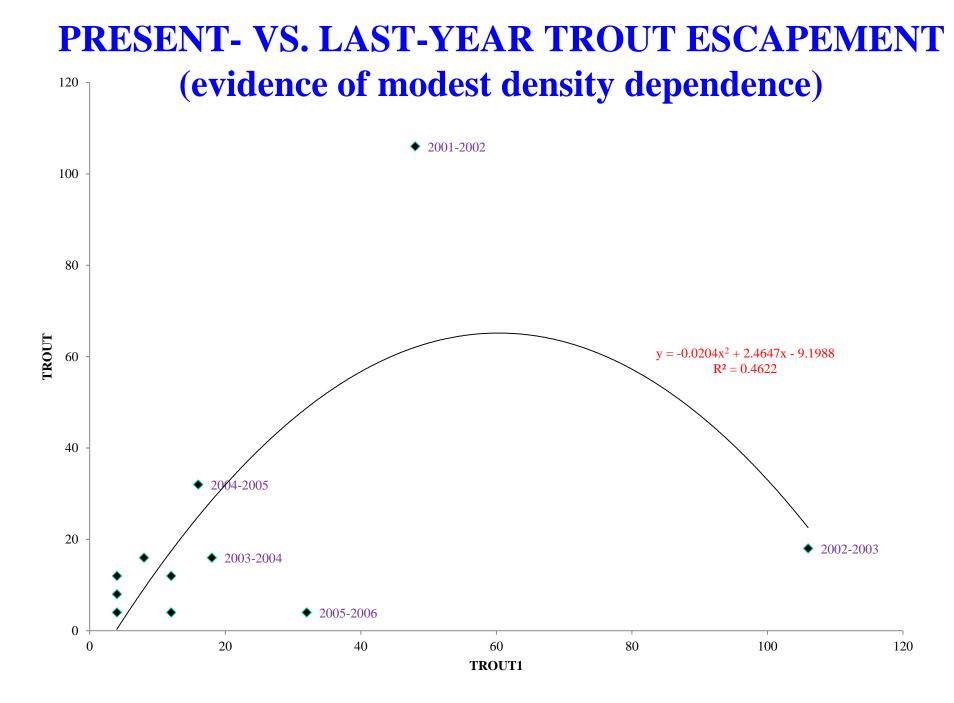
- Across years (even though *preceding year* was strong effect)
- *Best lake model*; dry = +1, semi-dry = +0.5, & wet = -1 points

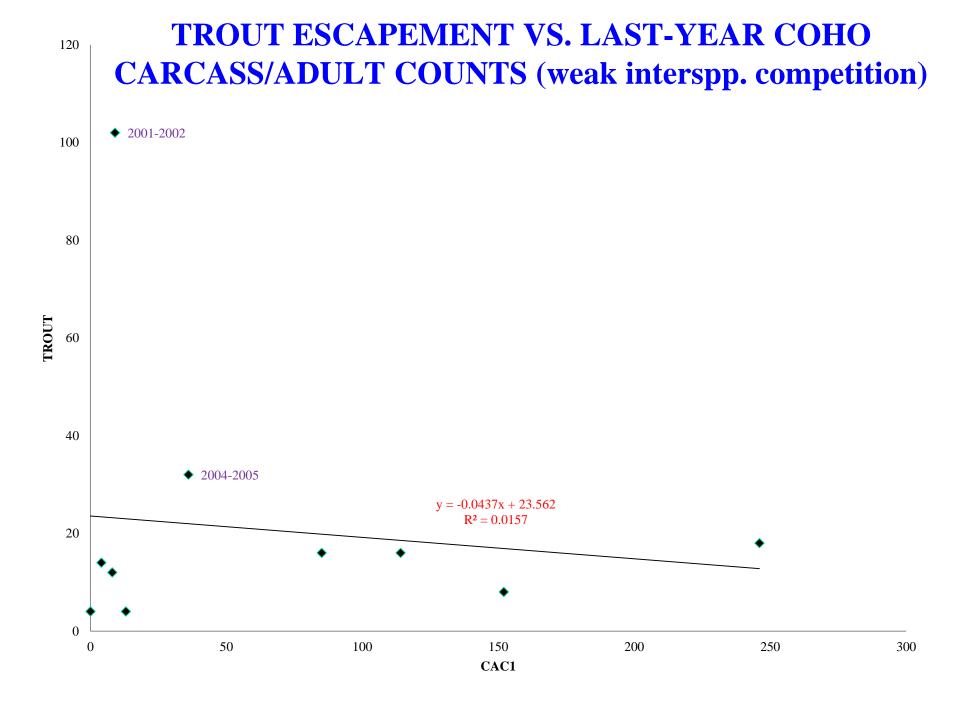

Cumulative thermal (peak CCT-spawning) variable

* Last > present year index (coldwater benefits)


Last-year biotic (density-related) variables (mostly beneficial; *minor curvilinearity*)


- * Cutthroat economent (forecast's
 - * <u>Cutthroat escapement (forecast'g)</u>
 - Weaker (likely *Beverton-Holt*) density dependence
 - * Food abundance (coho salmon)
 - *Late-winter* carcass/adult abundance (*flood effect?*)





ESCAPEMENT VS. CROSS-YEAR LAKE ¹²⁰ CONDITION (sensitive to consecutive droughts)

Effects of Warm-Weather Dry-Outs: 1998-2000, 2002-3, 2005-6, & 2009-10

- Irely Lk. often dries out down to middle Big Cr.

<u>Full dry-out</u> has recurred over the last few decades

- * Based on remote-sensing info during 1984-2012 (Vadas et al. 2016)
 - * Worse dry-outs since interdecadal-climate shift of 1999 (oddly)
- # <u>Dying</u> sculpins, crayfishes, & dragonfly nymphs there
- # Hence, <u>cutthroat</u> is a climate-sensitive species (*cold-adapted*)

* Despite its groundwater preferences (i.e., relatively low spawning flows)

Effects of Warm-Weather Dry-Outs: 1998-2000, 2002-3, 2005-6, & 2009-10

- <u>Possible large-fish refuge</u> in flatter, deeper reach near

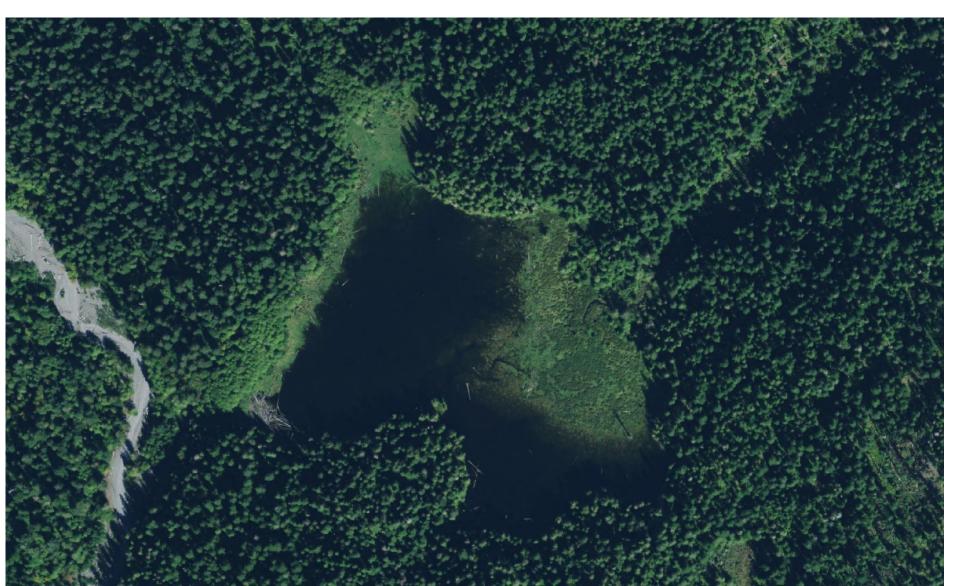
Irely Lk. (pool-dominated)

- *# Immature coho & cutthroat* of various sizes in mainstem
- # <u>Perennially flowing</u> in most mainstem reaches (w/ some *residual pools* D/S)
 # Loss of <u>trout-fishing action</u> of 1990s
 - Middle Big Cr. (intermittent fish passage)



<u>Hyporheic flow</u> during nonwinter months (*flood scour*) * Unlikely refuge (*until now*) # But 2-3 salmon spp. spawn here # <u>Well-forested watershed</u> likely compensates (allowing salmonid persistence)

Biophysical Conditions Since 2015 (<u>major drought</u> via El Niño/blob impacts, as portrayed by WDOE thermal data for <u>Puget Sound</u>, c/o Dr. Christopher Krembs)


Temperature anomalies span across the land-ocean continuum

Irely Lake - 2015 Drought (<u>Aug. > dry</u>, showing bare & RCG [weedy] areas that reflect depth trends)

Irely Lake - 2015 After Rain (<u>Sep. full</u>, showing some exposed RCG)

Irely Lake - 2017 Post-Blob (<u>Aug. < full</u>, showing mid-levels of exposed RCG)

Biophysical Conditions Since Major Drought of 2015-16

- Moderate trout escapement in 2015

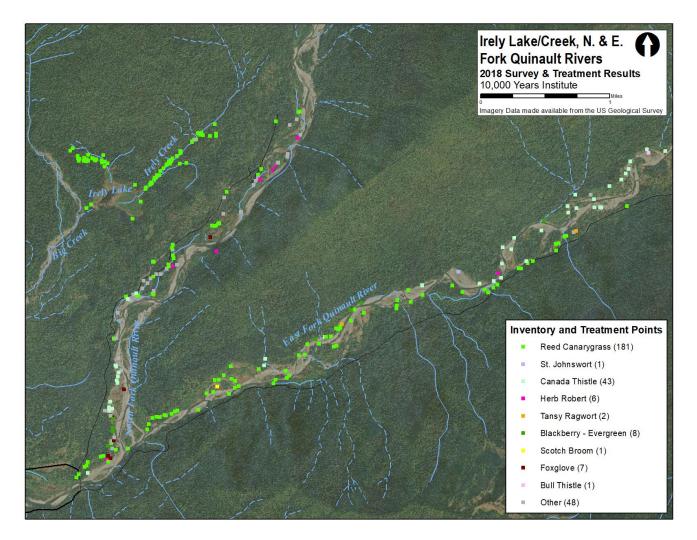
<u>22</u> (somewhat > <u>16</u> for 2012)

* Likely better lake levels for <u>sampling hiatus</u> of 2013-14

- Irely Lk. dry-outs during 2015-16

Escapement dropped to $\underline{4}$ in 2016 (Aug. photo w/ RCG) # But escapement rose to $\underline{8}$ in 2017

- Escapement nil in 2018


1st time to get "skunked" (0
 redds)

Was incentive to start lake/crk. <u>RCG removals</u> during 2018 (NPS & 10KYI)

- Continued RCG-removal & trout-redd during 2019, etc. # Including air/crk. thermographs

SU/FA 2018 - Start of RCG-Removal Efforts

There & in N. & E. forks of the Quinault R.

Potential RCG impacts (spring 2018 photos show a very full lake)

- Channel (lake/creek) filling & heating
- Creek flow & sediment transport
- Prey production
- Riparian succession

Conclusions

 Despite old-growth, temperate-rainforest conditions w/ high rainfall, existing water was limiting for CCT in the Irely Lake watershed (cobble/boulder sieve effect)

Additional water use from <u>developed</u>.
 <u>headwater streams</u> typically impacts
 salmonid-population viability

• Quantified in lower Irely Creek via PHABSIM studies in 2 reaches of this protected stream

 Joint riparian (e.g., RCG) & instream-flow management important for Pacific-salmonid protection in more-developed watersheds (e.g., Central/South Puget Sound)