Predicting Coastal Cutthroat Trout Smolt Productivity from Physiographic Variables at a Watershed Scale

Christopher Burns
LGL Limited – Environmental Research Associates

Coastal Cutthroat Trout Symposium
November 7-8, 2018
Newport, Oregon
1. Management Background
 • Problem
 • Challenges
2. Purpose
 • Research Question
 • Intentions
3. Methods
 • Study Area
 • Smolt Data
 • Hydrological and Spatial Data
 • Statistical Analysis
4. Results and Discussion
 • Smolt Frequency Distribution, Annual Correlation and Variance
 • Model Predictors, Selection, and Performance
5. Conclusion and Recommendations
Value to Canadians
• Ecologically and economically important species

Problem
• Blue-listed species
• Population declines
• Populations not routinely monitored

Challenges
• Monitoring difficult
• Watershed scale abundance assessments not financially or logistically feasible
Purpose

Approach
• Correlative analysis
• Watershed
• 1:20,000 scale
• Model the relationship of selected physiographic variables on cutthroat smolt abundance

Research Question
• Can the productive capacity of cutthroat smolts be predicted from physiographic variables?

Intention
• Smolt abundance characteristics
• Limits to cutthroat smolt productivity
• Simple and practical method to predict productive capacity
Methods

Study Area
• Southern British Columbia and Washington State

Smolt Data Review
• Metadata collection
• Watershed studies using fence and rotary screw traps
• 170 potential study watersheds reviewed
 • BC – 68 watersheds
 • WA – 102 watersheds
Methods

Smolt Data Selection
- 50 study watersheds selected
 - BC – 8 watersheds
 - WA – 42 watersheds
- Three or more years of abundance estimates
- 653 annual estimates of smolt abundance from 50 study watersheds
 - 31 watersheds > 10 years of smolt abundance data
 - 25 watersheds > 10 years of consecutive smolt abundance data
- Smolt determination
Methods

Hydrological and Spatial Data
- Calculated LT MAD
- Identified cutthroat dominated reaches using LT MAD ≤ 630 L/s
- Permanent barrier identification
- Separation of stream length into gradient zones (USGS 10 m DEM; Provincial 25 m DEM)
- Lake area

Statistical Analysis
- Abundance data
 - Shapiro-Wilk test for normality
 - Durbin-Watson test
 - Linear regression
Methods

Statistical Analysis

- Model fitting
 - Pearson product-moment correlation coefficient matrix
 - Random effects model
 - Maximum likelihood
 - Least squares
 - GSREG
 - AIC
Results and Discussion

Smolt Frequency Distribution, Annual Correlation and Variance

- Annual abundance normally distributed
 - 23 of 31 watersheds

- Annual abundance not serially correlated
 - 20 of 25 watersheds

- Annual variation was strongly correlated with mean abundance
 - $R^2 = 0.72$
Results and Discussion

Model Predictors, Selection, and Performance

- Pearson product-moment correlation coefficient matrix
- 7 predictor variables
- GSREG – 127 model combinations

<table>
<thead>
<tr>
<th>Predictor Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.stream04</td>
</tr>
<tr>
<td>i.stream04</td>
</tr>
<tr>
<td>p.stream48</td>
</tr>
<tr>
<td>i.stream48</td>
</tr>
<tr>
<td>lake.class1</td>
</tr>
<tr>
<td>lake.class2</td>
</tr>
<tr>
<td>lake.class3</td>
</tr>
</tbody>
</table>
Results and Discussion

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Predictor Variables</th>
<th>Model χ^2</th>
<th>χ^2 p-value</th>
<th>AIC</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p.stream04 + i.stream04 + lake.class1 + lake.class2</td>
<td>15.33</td>
<td>0.004</td>
<td>567.71</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>p.stream04 + i.stream04 + lake.class1 + lake.class3</td>
<td>15.33</td>
<td>0.004</td>
<td>567.71</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>p.stream04 + i.stream04 + lake.class2 + lake.class3</td>
<td>15.33</td>
<td>0.004</td>
<td>567.71</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>p.stream04 + lake.class1</td>
<td>10.46</td>
<td>0.005</td>
<td>568.57</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>p.stream04 + i.stream04 + lake.class1</td>
<td>12.09</td>
<td>0.007</td>
<td>568.94</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Results and Discussion

Model Predictors, Selection, and Performance

- Permanent stream length of 0-4% channel gradient
- Lake area of 0-5 ha
- Smolt abundance is limited at least partially by the availability of physical habitat
- Large proportion of the variance in smolt abundance remained unexplained
 - Habitat quality
 - Invertebrate production
 - Adult spawning success or abundance
 - Juvenile survival
Results and Discussion

Model Predictors, Selection, and Performance

- Uncertainties
 - Species lie history diversity
 - Ambiguity of cutthroat smolt
 - Incorrect species identification
 - Spatial scale
 - Barriers to fish movement
Conclusion and Recommendations

Recommendations

1. Re-evaluation of watersheds included in the model
 - Near tide line traps reduce uncertainty of seaward migrating juveniles
2. Mapping re-evaluation
 - Watershed and reach-specific knowledge
 - Use temporary barrier not just permanent barrier classifications
 - Use the latest 3D national hydrography dataset to derive stream gradients
3. Consistent approach in species identification and smolt classification
Acknowledgments

- British Columbia Ministry of Environment
 - Dr. Peter Tschaplinski
 - Ronald Ptolemy
- Royal Roads University
 - Dr. Bill Dushenko
- GIS
 - Michael Stead
- Statistics
 - Dr. Benjamin Beall
- Resource Agencies and Aboriginal Groups
 - Washington Department of Fish and Wildlife
 - Jamestown S’Klallam Tribe
 - Lower Elwha Klallam Tribe
 - Squaxin Island Tribe