Predicting Coastal Cutthroat Trout Smolt Productivity from Physiographic Variables at a Watershed Scale

Christopher Burns LGL Limited – Environmental Research Associates

Coastal Cutthroat Trout Symposium November 7-8, 2018 Newport, Oregon

Presentation Outline

- 1. Management Background
 - Problem
 - Challenges
- 2. Purpose
 - Research Question
 - Intentions
- 3. Methods
 - Study Area
 - Smolt Data
 - Hydrological and Spatial Data
 - Statistical Analysis

- 4. Results and Discussion
 - Smolt Frequency Distribution, Annual Correlation and Variance
 - Model Predictors, Selection, and Performance
- 5. Conclusion and Recommendations

Background

Value to Canadians

• Ecologically and economically important species

Problem

- Blue-listed species
- Population declines
- Populations not routinely monitored

Challenges

- Monitoring difficult
- Watershed scale abundance assessments not financially or logistically feasible

Purpose

Approach

- Correlative analysis
- Watershed
- 1:20,000 scale
- Model the relationship of selected physiographic variables on cutthroat smolt abundance

Research Question

• Can the productive capacity of cutthroat smolts be predicted from physiographic variables?

Intention

- Smolt abundance characteristics
- Limits to cutthroat smolt productivity
- Simple and practical method to predict productive capacity

Study Area

Southern British Columbia and Washington State

Smolt Data Review

- Metadata collection
- Watershed studies using fence and rotary screw traps
- 170 potential study watersheds reviewed
 - BC 68 watersheds
 - WA 102 watersheds

Smolt Data Selection

- 50 study watersheds selected
 - BC 8 watersheds
 - WA 42 watersheds
- Three or more years of abundance estimates
- 653 annual estimates of smolt abundance from 50 study watersheds
 - 31 watersheds > 10 years of smolt abundance data
 - 25 watersheds > 10 years of consecutive smolt abundance data
- Smolt determination

Washington

Study Watershed International Boundariy

Kilometers

Hydrological and Spatial Data

- Calculated LT MAD
- Identified cutthroat dominated reaches using LT MAD ≤ 630 L/s
- Permanent barrier identification
- Separation of stream length into gradient zones (USGS 10 m DEM; Provincial 25 m DEM)
- Lake area

Statistical Analysis

- Abundance data
 - Shapiro-Wilk test for normality
 - Durbin-Watson test
 - Linear regression

Statistical Analysis

- Model fitting
 - Pearson product-moment correlation coefficient matrix
 - Random effects model
 - Maximum likelihood
 - Least squares
 - GSREG
 - AIC

Smolt Frequency Distribution, Annual Correlation and Variance

- Annual abundance normally distributed
 - 23 of 31 watersheds
- Annual abundance not serially correlated
 - 20 of 25 watersheds
- Annual variation was strongly correlated with mean abundance
 - $R^2 = 0.72$

Model Predictors, Selection, and Performance

- Pearson product-moment correlation coefficient matrix
- 7 predictor variables
- GSREG 127 model combinations

Predictor Variables p.stream04 i.stream04 p.stream48 i.stream48 lake.class1 lake.class2 lake.class3

Model No.	Predictor Variables	Model χ²	χ²	AIC	R ²
			p- value		
1	p.stream04 + i.stream04 + lake.class1 +	15.33	0.004	567.71	0.21
	lake.class2				
2	p.stream04 + i.stream04 + lake.class1 +	15.33	0.004	567.71	0.21
	lake.class3				
3	p.stream04 + i.stream04 + lake.class2 +	15.33	0.004	567.71	0.21
	lake.class3				
4	p.stream04 + lake.class1	10.46	0.005	568.57	0.16
5	p.stream04 + i.stream04 + lake.class1	12.09	0.007	568.94	0.16

Model Predictors, Selection, and Performance

- Permanent stream length of 0-4% channel gradient
- Lake area of 0-5 ha
- Smolt abundance is limited at least partially by the availability of physical habitat
- Large proportion of the variance in smolt abundance remained unexplained
 - Habitat quality
 - Invertebrate production
 - Adult spawning success or abundance
 - Juvenile survival

Model Predictors, Selection, and Performance

- Uncertainties
 - Species lie history diversity
 - Ambiguity of cutthroat smolt
 - Incorrect species identification
 - Spatial scale
 - Barriers to fish movement

Conclusion and Recommendations

Recommendations

- 1. Re-evaluation of watersheds included in the model
 - Near tide line traps reduce uncertainty of seward migrating juveniles
- 2. Mapping re-evaluation
 - Watershed and reach-specific knowledge
 - Use temporary barrier not just permanent barrier classifications
 - Use the latest 3D national hydrography dataset to derive stream gradients
- 3. Consistent approach in species identification and smolt classification

Acknowledgments

- British Columbia Ministry of Environment
 - Dr. Peter Tschaplinski
 - Ronald Ptolemy
- Royal Roads University
 - Dr. Bill Dushenko
- GIS
 - Michael Stead
- Statistics
 - Dr. Benjamin Beall
- Resource Agencies and Aboriginal Groups
 - Washington Department of Fish and Wildlife
 - Jamestown S'Klallam Tribe
 - Lower Elwha Klallam Tribe
 - Squaxin Island Tribe