

Cutthroat trout responses to gap formation in the riparian forest canopy

Dana R. Warren^{1,2} Allison Swartz¹

¹Dept. Forest Ecosystems and Society, OSU ²Dept. Fisheries and Wildlife, OSU

HJ Andrews Experimental Forest

Google earth

Image Landsat / Copernicus

HJ Andrews Experimental Forest

HJ Andrews Experimental Forest

Image Landsat / Copernicus

Forests <100 yrs old dominate U.S. PNW landscapes

Pan et al. 2011

Few stands with complex forest structure

Pan et al. 2011 Donato et al. 2012

Forest Structure CHANGES over time

Pan et al. 2011 Donato et al. 2012

2. Patterns of light in streams - SPATIAL

Aquat Sci (2013) 75:547–558 DOI 10.1007/s00027-013-0299-2

Aquatic Sciences

RESEARCH ARTICLE

Comparing streambed light availability and canopy cover in streams with old-growth versus early-mature riparian forests in western Oregon

Dana R. Warren · William S. Keeton · Heather A. Bechtold · Emma J. Rosi-Marshall

Warren et al. 2013 – Aquatic Sciences

Distance (m)

Warren et al. 2013 – Aquatic Sciences

Stand development (simplified)

Donato et al. 2012

Stand development (simplified)

Donato et al. 2012

Take home messages (1)

- 1. Light is spatially variable in streams and far more variable in late-succession forests
- 2. Late succession forests have more light on average than mid-succession forests in PNW forests
- 3. The greater light in late-succession forests is a result of periodic canopy gaps

Why light?

- Stream biota (fish) are affected by more than just habitat
- Stream light can be a key control on primary production (and therefore the rest of the food web)
- Stream light influences stream temperature
- High quality food resources that respond to increasing stream light (algae) that shows up disproportionately in higher trophic levels

Conceptual framework

Forest structure influences stream predators via 'Bottom-up" drivers in the food web

ECOSPHERE

Linking riparian shade and the legacies of forest management to fish and vertebrate biomass in forested streams

MATTHEW J. KAYLOR^{1,†} AND DANA R. WARREN^{1,2}

Citation: Kaylor, M. J., and D. R. Warren. 2017. Linking riparian shade and the legacies of forest management to fish and vertebrate biomass in forested streams. Ecosphere 8(6):e01845. 10.1002/ecs2.1845

Relationships with and among algae and stream biota

Relationships with and among algae and stream biota

Relationships with and among algae and stream biota

Take home messages (2)

1. In streams with closed canopy mid-succession riparian forests algal production is often largely light limited

- Stream reaches with complex OG riparian forests or systems where riparian regeneration by smaller trees have more light - **on average**,
 - More algae
 - More macroinvertebreates
 - More fish

NEXT STEPS

- 1. Correlation does not equal Causation
- 2. We need an experiment. . .
- People have clear-cut next to the stream but that is not consistent (broadly) with historic riparian conditions

1. Increases in light in older forests are due to more gaps

Does creating canopy gap yield a measurable increase in fish biomass in streams?

NEXT STEPS

Stream gap experiment

Cut gaps into a riparian zone with close-canopy second-growth forest

Study Question

How do Coastal Cutthroat trout, and other stream biota respond to the creation of a localized area of open canopy adjacent to and over the stream?

Before

Before

Light results at W100

Chlorophyll a results at W100

Age 1 trout results at W100

Study sites

Adult CT biomass/m² differences

Adult CT change in biomass/m² differences

YOY change in biomass/m² differences

Total vertebrate change in biomass/m² differences

Take home messages (3)

- 1. Creating canopy gaps can lead to increases in CT biomass (likely due to immigration into the reach
- 2. YOY responses are variable
- 3. Not all sites respond positively. . . (so extrapolation should be done with caution)

Thank you

Acknowledgements

Funding:

- HJ Andrews LTER
- NSF Div. Env. Biol. (Ecosystems)
- Fish and Wildlife Habitat in Managed Forests Grant Program
- Bureau of Land Management (Eugene District)
- USFS Willamette National Forest (McKenzie Ranger District)

Fieldwork and data collection:

- <u>Grad students:</u> Matt Kaylor, Emily Heaston, Allison Swartz
- <u>Field Technicians</u>: Brian VerWey, Kate Pospisil
- <u>Undergraduate students:</u> Claire Hacker, Lauren Still, Gavin Jones, Chris Frisell

Other intellectual contributions:

- Lina DiGrigorio
- Cheryl Friesen
- Stan Gregory
- William Keeton
- Julie Pett-Ridge
- Mark Shultz

Consumer responses to changing forest structure

Stream

Old-Growth

Murphy and Hall 1981 - CJFAS

Canopy Openness (%) Chlorophyll a (mg/cm²)

Stream

Old-Growth

Murphy and Hall 1981 - CJFAS

Consumer responses to changing forest structure

"Stand regeneration experiment"

• 1970's M. Murphy quantified effects of riparian forest harvest on stream food webs and stream habitat

 2014's M. Kaylor returned to these <u>exact</u> (or nearly exact) locations and re-assessed conditions in old-grown and regenerating forests after 38 yrs. of stand regeneration

Canopy Openness (%)

Chlorophyll a (mg/cm²)

Stream

Stream

Old-Growth

Kaylor and Warren 2017- CJFAS

Kaylor and Warren 2017- CJFAS

Large Wood (m³/100m²)

Pool Area (%)

Study Design

Average PAR (mol m⁻² day⁻¹)

Average PAR (mol m^{-2} day⁻¹)

Conceptual model for changing **Stream Ecosystem Function** over time in forested headwaters

Do we need to change our understanding of stream function and stream processes?

Conceptual model for changing **periphytion** over time in a forested headwater stream

Warren et al. 2016 - Ecosphere

Conceptual model for changing **invertebrates** over time in a forested headwater stream

Conceptual model for changing **predator biomass** over time in a forested headwater stream

Warren et al. 2016 - Ecosphere

Conceptual model for changing light over time in a forested headwater stream

Warren et al. 2016 - Ecosphere

1. Study Questions and Conceptual Framework

- Algal material is "higher quality" food that most allochthonous material that enters streams (i.e. leaves)
- Therefore relatively small increases in primary production have the potential to disproportionately impact secondary production

